Supongamos que un experimento aleatorio tiene las siguientes características:
Todo experimento que tenga estas características diremos que sigue el modelo de la distribución Binomial. A la variable X que expresa el número de éxitos obtenidos en cada prueba del experimento, la llamaremos variable aleatoria binomial.
- En cada prueba del experimento sólo son posibles dos resultados: el suceso A (éxito) y su contrario`A (fracaso).
- El resultado obtenido en cada prueba es independiente de los resultados obtenidos anteriormente.
- La probabilidad del suceso A es constante, la representamos por p, y no varía de una prueba a otra. La probabilidad de `A es 1- p y la representamos por q .
- El experimento consta de un número n de pruebas.
La variable binomial es una variable aleatoria discreta, sólo puede tomar los valores 0, 1, 2, 3, 4, ..., n suponiendo que se han realizado n pruebas. Como hay que considerar todas las maneras posibles de obtener k-éxitos y (n-k) fracasos debemos calcular éstas por combinaciones (número combinatorio n sobre k).
La distribución Binomial se suele representar por B(n,p) siendo n y p los parámetros de dicha distribución.
Función de Probabilidad de la v.a. Binomial
Función de probabilidad de la distribución Binomial o también denominada función de la distribución de Bernoulli (para n=1). Verificándose: 0 £ p £ 1
sábado, 25 de septiembre de 2010
DISTRIBUCION BINOMIAL
DISTRIBUCIÓN BINOMIAL
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario